Python_introduction 10/05/2020, 14:07

PYTHON — An introduction (towards applications in astrophysics)
By Sandra (march 2019)

T L L L L B i e B it i
One of the most popular programming languages for general use. It is easy to interpret,
it takes syntax from C, but not as fast as Fortran or similar. Wide number of applications
which are public. It is Free!
#
Other advantage of ipython: debagger, terminal interface, graphic environment, execute
external script, list of commands saved in file ipython_log.py.
L L Tt B B B B B e 3
Documentations for Intro:
x*x Course on Data Analysis with Python for PhD Students, by Leonardo Primavera (in Italian):
http://www.fis.unical.it/astroplasmi/primavera/dottorato/dottorato.html
*x Tutorial for beginners:
http://www.afterhoursprogramming.com/tutorial/Python/Introduction/
s Interactive tutorial (install Notebook first, than start using it locally):
http://jupyter.org
*x Tutorial for plotting, VERY EASY & WELL DONE:
http://matplotlib.org/users/pyplot_tutorial.html
Documentations for Astro:

*x Documentation for Astropy package for use in astronomy:

http://astropy.readthedocs.org/en/stable/index.html

Page 1 of 15

Python_introduction 10/05/2020, 14:07

**x General advises:
http://python4astronomers.github.io/
x General advices and tutorials:

http://www.astropython.org

$ vi ~/.ipython/profile_default/startup/00-first.py # file with initialisation command
such as import librariies
Example:

00——first.py can contain the following commands:
get_ipython().magic(u"%pylab") # with this, -pylab can be omitted when starting

import numpy as np # importing libraries
import matplotlib.pyplot as plt

Open Python by typing from Unix terminal:

$ python # the simplest way to access

$ ipython notebook # for interactive use of iPython on the web

$ ipython —pylab # preferred, version 2.7, —-pylab import libraries
such as numpy & matplotlib

$ ipython3 —pylab # latest version 3.7

$ ipython —-help | less # options given

In [1]: %pylab tk # Necessary to change graphic interphase

Page 2 of 15

Python_introduction

To exit: Ctrl-D
or: exit (if ipython is used)
or: quit (if ipython is used)

Important libraries to import (NumPy, SciPy, Matplotlib, Astropy, Math):

In
In
In
In
In

[1]:
[2]:
[3]:
[4]:
[5]:

import numpy as np

import scipy.stats as st
import math as m
import astropy as astr

np short for numpy, for scientific computing
import matplotlib.pyplot as plt # graphics interface, already imported if —pylab is used

#
#
#

stats scripts
library for math functions

import astropy for astronomy applications

In
In

[1]:
[2]:

HELP:

dir(m)
help(m)

In [3]: help()
help> quit

®HHH

lists all functions in math
lists all functions in math
general interactive help

In
In
In
In

In

[1]:
[2]:
[3]:
[4]:

[5]:

Print list of commands used:
history

history -n

history 3

srerun 3

Search command already used:

Ctrl-r

HHH

#

numbered list of commands
it shows command #3
rerun command #3

type command to search

Some examples of functions in Math:

In [1]: print (m.pi)
3.14159265359
In [2]: pi

#

#

print p—greco

print p—greco

10/05/2020, 14:07

Page 3 of 15

Python_introduction

3.14159265359

In [3]: print (m.sin(pi))
1.22464679915e-16

should give you zero, (sin(pi)=0,
but returns number closest to zero

In [4]: sin(pi) # same as before
In [5]: np.sin(pi) # same as before
Simple plotting functions:
In [1]: x = [0,1] # it defines x range
In [2]: y=[10,30] # it defines y range
In [3]: plot(x,y) # plot line connecting x to vy
In [4]: plt.plot(x,y) # same as before
In [5]: plt.plot([0,1],[10,30]) # same as before
In [6]: plt.plot([e@,1],[10,30],"'—-") # same as before with dashed line
In [7]: plot([0,1],[10,20]) # same as before
Plot in log scale (positive numbers):
In [8]: x = [10,100] # X range
In [9]: y=[10,30] # y range
In [10]: plt.loglog(x, y, basex=10, basey=10) # plots in log-scale base 10 for x & y
Labels for x—axis and y-axis, plus title on top of the plot:
In [11]: xlabel ('Temperature')
In [12]: ylabel ('Density')
In [13]: plt.title('This is my beautiful plot"')
In [14]: plt.text(3, 5, '$\mu=100,\ \sigma=15$%$') # plot labels inside the graph
In [15]: plt.grid(True) # plot grid
In [16]: plt.axis([50,60,13,100]) # plot limited portion of graph

10/05/2020, 14:07

Page 4 of 15

Python_introduction

Clear display:

In [16]: clf()

Read table, show values and plot:
In [1]: x,y=loadtxt('test.txt',unpack=True,usecols=(0,1))
In [2]: print (x,y)
In [3]: xI[3]
In [4]: plot(x,y)
In [5]: plot(x,y,'ro')
In [6]: plot(x,sin(y))
In [7]: plot(x,y,'g™")
In [8]: plot(x,y,'.")
In [9]: plot(x,y,'h")

Plot with error bars:

In

In [12]: plt.errorbar(x,y, xerr=dx, yerr=dy, fmt='b~', ecolor='y"')

10/05/2020, 14:07

reads cols 1 & 2 test.txt
print values

print 4th element in array
connects points

red circles

plot x vs. sin(y)

green triangles

black points

large hexagon

[10]: x,dx,y,dy=loadtxt('test2.txt',unpack=True,usecols=(0,1,2,3))
In [11]: plt.errorbar(x,y,dy,dx, 'go’)
In [11]: plt.errorbar(x,y,dy,1,’'r*")
fixed to 1

symbol have different colors
In [13]: plt.errorbar(x,y,dy,None,'0o")
points

In [1]: x=arange(10,20,0.1)

Print vector to a file:

creates vector

to note the order of array
error bar of x values is

same but errorbar and

error bars only for x

In [2]: x.tofile(“myfile”,sep=‘ ‘) # elements written in file separated by 1 space

In [3]: x.tofile(“myfile”,sep=‘\n‘)

Create random numbers:

elements separated by one line

Page 5 of 15

Python_introduction 10/05/2020, 14:07

In [1]: r=randn(100)
In [2]: r=randn(3,4)
In [3]: rlo,0]
In [4]: r[2,1]
In [5]: r[2][1]

1D array r with 100 random numbers

2D table r with 3 raws and 4 columns

print first element (first raw, first column)
print element (3,2)

same as before

5 random values

matrix 2x3 random values

print matrix

print last element of matrix above

In [6]: a=np.random.randn(5)
In [7]: b=np.random.randn(2,3)
In [8]: print(b)

In [9]: b[1,2]

HHHH HHHFHRI

Plot histogram from table:

In [1]: x,y=loadtxt('test.txt',unpack=True,usecols=(0,1)) # read file

In [2]: width = 0.5 # width of the bin is 0.5

In [3]: plt.bar(x,y, width, color='r") # histogram x,y is red

In [4]: plt.bar((x+1)/2, y, width*x2, color='b") # change x,width and color to blue
In [5]: hist(y) # plot histogram of column y

Alternative plot histogram (from random numbers)

In [1]: mu, sigma = 100, 15

In [2]: x = mu + sigma * np.random.randn(10000) # creates array with 1000 random
numbers

In [3]: n, bins, patches = plt.hist(x, 50, facecolor='g') # histogram of the data in 5@ bins (in green)

Polynomial fit of x,y of any degree:

In [1]: x,y=loadtxt('test.txt', unpack=True,usecols=(0,1))

In [2]: plot(x,y,'0o") # plot numbers

In [3]: polyfit(x,y,1) # degree=1, output 2 coefficients
Out[4]: array([0.42848485, -0.14666667]) # output coefficients

In [5]: plot(x,0.42848485%xx-0.14666667,"'-") # plot line with coefficients

Page 6 of 15

Python_introduction 10/05/2020, 14:07

In [6]: polyfit(x,y,2) # degree=2, output 3 coefficients

Out[7]: array([-0.02689394, 0.72431818, -0.73833333])

In [8]: plot(x,-0.02689394*x*xx2+0.72431818%x-0.73833333, 'r—-") # plot 2-degree line

In [9]: coeffs = polyfit(x,y,2) # print coefficients of 2-degree line in array
In [10]: plot(x,xxxkcoeffs[0]+xkcoeffs[1l]+coeffs[2]) # plot 2-degree fit

Calculates coefficients, writes in array and plots:

In [10]: coeffs = numpy.polyfit(x,y,2)

In [11]: plot(x,y,'o")

In [12]: plot(x,coeffs[@]xxxx2+coeffs[1]*xx+coeffs[2], 'b-")

In [13]: corr = numpy.corrcoef(x,y)[0,1] # create matrix with correlation coefficients and print value
in (0,1)

In [14]: print (corr) # print significance of correlation

Sum elements in array or matrix:

In [1]: x,y=loadtxt('test.txt',unpack=True,usecols=(0,1))
In [2]: sum = np.sum(y) # sum elements in array y
In [3]: print (sum) # print result

In [4]: data = numpy.loadtxt(‘test.txt’)
In [5]: sum = np.sum(datal:,0]) # sum first column
In [6]: sum = np.sum(datal:,1]) # sum second column

To save plot in display in PDF or PS file:

In [7]: plt.savefig('figure.pdf"')
In [8]: plt.savefig('figure.ps"')

Display figure in foreground:

Page 7 of 15

Python_introduction

In [1]: plt.show()
To plot different plots in different places
In [2]: plt.figure("This is my new figure") # plot figure in another display
In [3]: plt.figure(1) # plot in display 1
In [4]: plot(x,y)
In [3]: plt.figure(2) # plot in display 2
In [4]: plot(x,sqrt(y))
In [5]: plt.figure(3, figsize = (10, 5)) # Size of display in cm
In [5]: plt.subplot(121) # (121) = plot in 1 row x 2 colomns (12),
first element (1 final)
In [5]: plt.plot(x,y,'r-")
In [5]: plt.subplot(122) # (122) = plot in 1 row x 2 colomns (12),
second element (2 final)
In [5]: plt.plot(x,y**x2,'b.")
To execute a script file within Python:
In [1]: execfile(“test.py”) # for example test.py
If using version of Python 3, execfile doesn’t work, then:
In [2]: exec(compile(open('test.py').read(), 'test.py','exec'))
Or, also:
In [3]: import runpy
In [4]: file_globals = runpy.run_path(“test.py")

Finally, also (faster):

10/05/2020, 14:07

Page 8 of 15

Python_introduction 10/05/2020, 14:07

In [5]: exec(open('test.py').read())
Or from outside Python:

$ python test.py

Save list of used commands in a file (called ipython_log.py):

In [1]: logstart # starts writing log file (file name optional)
In [2]: logstop # stops writing log file

In [3]: logstart ? # all possible options

In [4]: logstart -o # add output which is added in the same log file

" i

Print comment on the screen (‘ ‘ or are almost the same):

In [1]: print (‘Good morning beautiful lady')

In [2]: s1 = ‘ciao’

In [3]: print (s1)

ciao

In [4]: print (s1x3) # prints 3 times “ciao”
ciaociaociao

In [5]: s2 = bella
In [6]: print (sl+s2)
ciaobella

In [7]: s = ‘ciao\tbella’
In [8]: print (s)
ciao bella

NOTE: if Python 3 is used, brackets must be used: print (s)

Working with lists:

Page 9 of 15

Python_introduction

In [1]: 1=[1,2,3],'ciao’
In [2]: print (1)
([1, 2, 3], 'ciao')

In
[1,

In

[3]:

2,

[4]:

ciao

In
In
2

In

[5]:
[6]:

[7]1:

bella

In
In
(3,

[8]:
[9]:

4,

print (1[0])
3]

print (1[1])

1=11,2,3], " 'ciao’, 'bella’
print (1[@][1])

print (1[2])

print first list

print second list

print second element of first list:

Lists can be modified:

In [10]: 1 = [1,2,3,4,5]
In [11]: 1[2]=100

In [12]: print (1)

[1, 2, 100, 4, 5]

it doesn’t work if you omit []

In
In
In
In

[1]:
[2]:
[3]:
[4]:

To create an array:

10)
10,20)
10,20,3)
1,10,0.1)

X=arange
X=arange
X=arange
X=arange

P,

#
#
#
#

integer numbers from @ to 9

10 integers starting from 10 to 19, steps of 1

array starting from 10 in steps of 3, ending before 20
array starting from 1 in steps of 0.1, ending at 10

10/05/2020, 14:07

Page 10 of 15

Python_introduction 10/05/2020, 14:07

Variable types: integer, string, floating..:

In [1]: a = pi
In [2]: type (a)
Out[2]: float

In [3]: a=int(pi)
In [4]: print (a)
3

In [5]: f = float(a)
In [6]: print (f)
3.0

In [7]: name = ’Anna’
In [8]: type (name)
Out: str

In [9]: a = 0.5+2j
In [10]: print (a)
(0.5+27) # print real and complex numbers

In [11]: type(a)
Out: complex

In [12]: s=10
In [13]: type(s)
Out: int

In [14]: s=str(10)
In [15]: type(s)
Qut: str # assign s the type string, although it is a number

Reading ASCII file and printing values:

Page 11 of 15

Python_introduction

In [1]: import astropy.io.ascii as ascii
In [2]: ascii.read(‘test.txt’)

Out[2]:
<Table length=8>

coll col2
float64 int64
1.0 2
2.0 3
2.0 5
3.5 5
5.0 6
7.4 12
9.0 13
12.0 15
Or (similar to before):
In [3]: import numpy as np
In [4]: data = np.loadtxt('test.txt', unpack = True) #
In [5]: print (datal:,1]) #
In [6]: data = np.loadtxt(‘test.txt’)
In [7]: print (datal:,1]) #
In [8]: print (datal2,:1) #
Reading and printing numbers from a string:
In [1]: 1i =2
In [2]: x = sqrt(i)
In [3]: string = “These are your numbers %d %f” % (i,x) #
In [4]: print (string)

These are your numbers 2 1.414214

to unpack the table into different arrays
show second raw

show second row (different from before)
read third column

operator % connects the 2 parts

10/05/2020, 14:07

Page 12 of 15

Python_introduction 10/05/2020, 14:07

OPERATORS IF, ELSE, ELIF, FOR, WHILE

IF, ELIF, ELSE (it doesn’t have to conclude with else or elif):

In [1]: x = 100%*.5

In [2]: if x == 10.0:

. print ("x=", x)

. else:
print "This is not 10"

x =10.0

In [3]: x = sqrt(2)
In [4]: if x == 10:

print ("x = “, x)
elif x <= 10:
print ("x <= 10")

else:
print ("x > 10")

FOR:

In [1]: for var in range(5):
print (var)

AWNRO-

In [2]: 1=1,2,3, 'ciao'

Page 13 of 15

Python_introduction

In [3]: for i in 1:
print (ix2)

0O BRN-

iaociao
In [4]: for i in range(1,10,2):
print (i)

O JdUTWE

In [5]: 11 1,2,3

In [6] : 12 IIC1II’IIC2II'IIC3"

In [7]: for a,b in zip(11,12):
- print (a,b)

1 cl
2 c2
3 c3

start, end, step (integer is expected)
print 5 numbers increment by 2

operator “zip” concats 11 and 12

WHILE:

In [1]: x =1

In [2]: while x<10:
print ("The count is:",x)
X = x+1

The count is: 1
The count is: 2

initialise value of x

increment by 1

10/05/2020, 14:07

Page 14 of 15

Python_introduction

The
The
The
The
The
The
The
The

count
count
count
count
count
count
count
count

is:
is:
is:
is:
is:
is:
is:
is:

ROooNO UL~ W

10/05/2020, 14:07

Page 15 of 15

